Forex4you
Главная > Химия > Общая химия
Макеты страниц

122. Кислородсодержащие соединения галогенов.

Галогены образуют ряд соединений с кислородом. Однако все эти соединения неустойчивы, не получаются при непосредственном взаимодействии галогенов с кислородом и могут быть получены только косвенным путем. Такие особенности кислородных соединений галогенов согласуются с тем, что почти все они характеризуются положительными значениями стандартной энергии Гиббса образования (см., например, в табл. 7 на стр. 194 значения для ).

Из кислородсодержащих соединений галогенов наиболее устойчивы соли кислородных кислот, наименее— оксиды и кислоты. Во всех кислородсодержащих соединениях галогены, кроме фтора, проявляют положительную степень окисленности, достигающую семи.

Фторид кислорода можно получить пропусканием фтора в охлажденный раствор . Реакция идет согласно уравнению:

Помимо при этом всегда образуются кислород, озон и пероксид водорода. При обычных условиях — бесцветный газ с резким запахом озона. Фторид кислорода очень ядовит, проявляет сильные окислительные свойства и может служить одним из эффективных окислителей ракетных топлив.

Наиболее многочисленны и важны в практическом отношении кислородные соединения хлора, которые мы и рассмотрим несколько подробнее.

Как уже указывалось, кислородные соединения хлора могут быть получены только косвенными методами. Рассмотрение путей их образования начнем с процесса гидролиза хлора, т. е. с обратимой реакции между хлором и водой

в результате которой образуются соляная кислота и хлорноватстая кислота .

Гидролиз хлора является реакцией самоокисления-самовосстановления, при которой один из атомов хлора, присоединяя к себе электрон от другого атома, восстанавливается, а другой атом хлора окисляется.

Получающиеся при гидролизе хлора и могут взаимодействовать друг с другом, снова образуя хлор и воду, поэтому реакция не идет до конца; равновесие устанавливается, когда прореагирует приблизительно растворенного хлора. Таким образом, хлорная вода всегда содержит наряду с молекулами значительное количество соляной и хлорноватистой кислот.

Хлорноватистая кислота — очень слабая кислота ( ), более слабая, чем угольная; соли ее называются гипохлоритами. Будучи весьма нестойким соединением, хлорноватистая кислота даже в разбавленном растворе постепенно распадается (см. ниже).

Хлорноватистая кислота — очень сильный окислитель; ее образованием при взаимодействии хлора с водой объясняются белящие свойства хлора. Совершенно сухой хлор не белит, но в присутствии влаги происходит быстрое разрушение красящих веществ образующейся при гидролизе хлора хлорноватистой кислотой.

Если к хлорной воде прибавлять щелочь, то вследствие нейтрализации хлорноватистой и соляной кислот равновесие в системе

сдвигается вправо; реакция практически доходит до конца и получается раствор, содержащий соли хлорноватистой и соляной кислот:

Тот же результат получится, если непосредственно пропускать хлор в холодный раствор щелочи

или в ионно-молекулярной форме:

Полученный таким путем раствор солей хлорноватистой и соляной кислот применяется для беления; его белящие свойства обусловливаются тем, что гипохлорит калия легко разлагается уже при действии диоксида углерода, находящегося в воздухе, причем образуется хлорноватистая кислота:

Последняя и обесцвечивает красящие вещества, окисляя их.

Аналогичный раствор, содержащий гипохлорит натрия, получается при пропускании хлора в раствор гидроксида натрия. Оба раствора можно получить электролизом растворов хлоридов калия или натрия, если дать возможность выделяющемуся хлору реагировать с образующимися при электролизе щелочами (см, стр. 549).

При действии хлора на сухую гашеную известь получается так называемая белильная, или хлорная, известь. Главной ее составной частью является соль , образующаяся согласно уравнению:

Этой соли отвечает структурная формула , согласно которой следует рассматривать как смешанную соль соляной и хлорноватистой кислот.

Хлорная известь представляет собой белый порошок с резким запахом и обладает сильными окислительными свойствами. Во влажном воздухе под действием диоксида углерода она постепенно разлагается, выделяя хлорноватистую кислоту:

При действии на хлорную известь соляной кислоты выделяется хлор:

Хлорная известь применяется для отбелки растительного волокна (тканей, бумаги) и для дезинфекции.

В растворе хлорноватистая кислота испытывает три различных типа превращений, которые протекают независимо друг от друга:

Изменяя условия, можно добиться того, что реакция пройдет практически нацело по какому-нибудь одному направлению.

Под действием прямого солнечного света и в присутствии некоторых катализаторов или восстановителей разложение хлорноватистой кислоты протекает согласно уравнению (1).

Реакция (2) идет в присутствии водоотнимающнх средств, например . В результате реакции получается оксид (хлорноватистый ангидрид) , представляющий собой крайне неустойчивый желто-бурый газ с запахом, похожим на запах хлора.

Распад согласно реакции (3) особенно легко идет при нагревании. Поэтому, если пропускать хлор в горячий раствор гидроксида калия, то вместо сразу получается :

Продуктами реакции являются хлорид калия и хлорит калия — соль хлорноватой кислоты . Поскольку хлорат калия (или бертолетова соль) мало растворим в холодной воде, то при охлаждении раствора он выпадает в осадок.

Соответствующая хлоратам хлорноватая кислота известна только в виде водного раствора с концентрацией не выше . Она проявляет свойства сильной кислоты (приблизительно равной по силе и ) и сильного окислителя. Так, концентрированные ее растворы воспламеняют дерево.

В противоположность свободной , у хлоратов окислительные свойства в растворе выражены слабо. Большинство из них хорошо растворимы в воде; все они ядовиты. Наибольшее применение из хлоратов находит , который при нагревании легко разлагается. В присутствии (в качестве катализатора) разложение в основном протекает согласно уравнению:

С различными горючими веществами (серой, углем, фосфором) образует смеси, взрывающиеся при ударе. На этом основано его применение в артиллерийском деле для устройства запалов. Хлорат калия употребляется в пиротехнике для приготовления бенгальских огней и других легко воспламеняющихся смесей. Главный же потребитель хлората калия — спичечная промышленность. В головке обычной спички содержится около .

Ангидрид хлорноватой кислоты неизвестен. При действии концентрированной серной кислоты вместо него выделяется желто-бурый газ с характерным запахом — диоксид (или двуокись) хлора . Это очень неустойчивое соединение, которое при нагревании, ударе или соприкосновении с прочими веществами легко разлагается со взрывом на хлор и кислород.

Диоксид хлора применяют для отбелки или стерилизации различных материалов (бумажной массы, муки и ).

При взаимодействии с раствором щелочи медленно протекает реакция

с образованием солен двух кислот — хлорноватой и хлористой .

Хлористая кислота мало устойчива. По силе и окислительной активности она занимает промежуточное положение между и . Соли хлориты используются при отбелке тканей.

При осторожном нагревании хлората калия без катализатора его разложение протекает в основном согласно схеме:

Образующийся перхлорат калия очень мало растворим в воде и поэтому может быть легко выделен.

Действием концентрированной серной кислоты на может быть получена свободная хлорная кислота , представляющая собой бесцветную, дымящую на воздухе жидкость.

Безводная малоустойчива и иногда взрывается при хранении, но ее водные растворы вполне устойчивы. Окислительные свойства выражены слабее, чем у , а кислотные свойства— сильнее. Хлорная кислота — самая сильная из всех известных кислот.

Соли , за немногими исключениями, к которым относится и , хорошо растворимы и в растворе окислительных свойств не проявляют.

Если нагревать хлорную кислоту с , отнимающим от нее воду, то образуется оксид , или хлорный ангидрид,

Оксид - маслянистая жидкость, кипящая с разложением при . При ударе или при сильном нагревании взрывается.

Изменение свойств в ряду кислородных кислот хлора можно выразить следующей схемой:

С увеличением степени окисленности хлора устойчивость его кислородных кислот растет, а их окислительная способность уменьшается. Наиболее сильный окислитель — хлорноватистая кислота, наименее сильный — хлорная кислота.

Напротив, сила кислородных кислот хлора возрастает с увеличением его степени окисленности. Из всех гидроксидов хлора самая слабая кислота — хлорноватистая, самая сильная — хлорная. Такая закономерность — усиление кислотных свойств гидроксида , соответственно, ослабление его основных свойств) с ростом степени окисленности элемента характерна не только для хлора, но и для других элементов. В первом приближении эту закономерность можно объяснить, рассматривая все химические связи в молекулах гидроксидов как чисто ионные.

На рис. 108 схематически изображена часть молекулы гидроксида , составленная из -зарядного иона , иона кислорода и иона водорода (протона) . Диссоциация этой части молекулы на ионы может происходить либо с разрывом связи (в результате чего отщепляется ), либо с разрывом связи (что приводит к отщеплению иона ); в первом случае гидроксид будет проявлять свойства основания, во втором — свойства кислоты.

Каждый из возможных путей диссоциации гидроксида будет осуществляться тем легче, чем слабее связь между соответствующими ионами. При возрастании степени окисленности элемента увеличится заряд иона , что усилит его притяжение к иону и тем самым затруднит диссоциацию гидроксида по типу основания.

Рис. 108. Ионная схема фрагмента молекулы гидроксида

Вместе с тем усилится взаимное отталкивание одноименно заряженных ионов и , что облегчит диссоциацию по кислотному типу. Таким образом, с увеличением степени окисленности элемента усиливаются кислотные свойства и ослабевают основные свойства образуемого этим элементом гидроксида.

Увеличение радиуса иона при неизменном его заряде приведет к возрастанию расстояний между центром этого иона и центрами ионов и . В результате взаимное электростатическое притяжение ионов и станет более слабым, что облегчит диссоциацию по основному типу; одновременно уменьшится взаимное отталкивание ионов и , так что диссоциация по кислотному типу затруднится. Следовательно, с возрастанием радиуса иона элемента (при неизменном его заряде) усиливаются основные свойства и ослабляются кислотные свойства образуемого этим элементом гидроксида. Примером проявления этой закономерности может служить изменение констант кислотной диссоциации в ряду .

Разумеется, предположение о чисто ионной природе химических связей в молекулах гидроксидов является весьма грубым. В действительности связь имеет преимущественно ковалентный характер, а связь можно считать близкой к ионной только для щелочных металлов. Кроме того, изложенная трактовка кислотно-основных свойств гидроксидов не учитывает особенностей взаимодействия ионов и с молекулами растворителя (воды). Поэтому рассмотренная схема влияния заряда и размеров иона на характер диссоциации молекулы не может служить основой для количественной оценки кислотноосновных свойств гидроксидов. Однако при сопоставлении кислотно-основных свойств различных гидроксидов, образуемых данным элементом в разных состояниях его окисленности, или при сопоставлении свойств аналогичных гидроксидов, образуемых элементами одной и той же подгруппы периодической системы, эта схема в большинстве случаев приводит к правильным качественным выводам.

Кислородные соединения брома и иода. Растворы бромноватистой (НОВг) и иодноватистой (HOI) кислот могут быть получены, подобно хлорноватистой кислоте, взаимодействием соответствующих галогенов с водой

причем в ряду равновесие все в большей степени смещается влево.

При переходе от к НОВг и HOI устойчивость и окислительная активность кислот уменьшаются. По этому же ряду ослабляются и кислотные свойства (см. выше). Иодноватистая кислота HOI является уже амфотерным соединением, у которого основные свойства несколько преобладают кислотными.

Бромноватую и йодноватую кислоты можно получить путем окисления бромной или йодной воды хлором:

Бромноватая кислота очень похожа по свойствам на , а окислительные и кислотные свойства выражены значительно слабее.

Иодноватая кислота представляет собой бесцветные кристаллы, вполне устойчивые при комнатной температуре. При осторожном нагревании ее до можно получить порошок оксида , или йодноватого ангидрида — :

Йодноватый ангидрид проявляет окислительные свойства, а при нагревании выше распадается на и кислород.

До недавнего времени считали, что бром не образует соединений, в которых его степень окисленности равна семи. Однако в 1968 г. путем окисления были получены перброматы и соответствующая им бромная кислота . Наилучшим окислителем оказался :

О свойствах бромной кислоты и ее солей пока известно мало. Напротив, йодная кислота и ее соли (периодаты) хорошо изучены.

Сама кислота может быть получена действием иода на

или электролизом раствора :

Из раствора йодная кислота выделяется в виде бесцветных кристаллов, имеющих состав . Этот гидрат следует рассматривать как пятиосновную кислоту (ортоиодную), так как в нем все пять атомов водорода могут замещаться металлами с образованием солей (например, ). Йодная кислота — слабая, но более сильный окислитель, чем .

Оксид иода (VII) не получен.

<< Предыдущий параграф Следующий параграф >>
Оглавление